# k-means

## -CLUSTERING-

## optimize

your



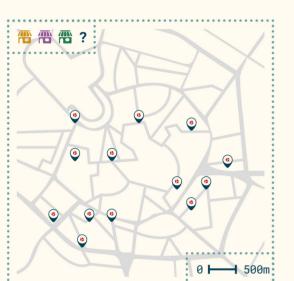


### ABOUT K-MEANS

This unsupervised algorithm allows you to tackle problems without having any idea of what the results will look like. It enables an indepth understanding of data, revealing hidden patterns.

### ABOUT CLUSTERS

Clustering is a type of data mining techniques that analyzes data to create groups based on patterns generated by various criteria, such as minimum distances, or density of data points.


### WHY WE NEED **K-MEANS CLUSTERING**

**Everyone loves sushi**. You're about to open three sushi stores in Milan and you need to figure out the **best location** in the city to minimize the delivery distances.

Here, the algorithm analyzes the geographical coordinates of the sushi demands and provides the best solution according to their location.

This algorithm is widely used in customer segmentation, anomaly detection, and delivery path optimization.

## CASE STUDY - Legend



Find the **stores' best location** to minimize the delivery distance

Stores to open (CENTROIDS)

- T Store 1 (Centroid C<sub>1</sub> of the cluster1) Store 2 (Centroid C<sub>2</sub> of the cluster2)
- 13 x 🔮

Delivery request (DATASET)

(Centroid C₃ of the cluster3)

## INITIALIZATION of the algorithm

## .....

### COMPUTE DISTANCE (冊 → ②)

In this algorithm, clusters are **about** minimizing distances between datapoints (customers) and centroids (stores). So, you need to represent the unlabelled data relying on **specific numeric features** 

In this case, we are working with **geographical** coordinates, using km as a unit of measure of distance. Here is the datacloud in which every point represents a sushi delivery demand in Milan

### INITIALIZE CENTROIDS (音)

- First, you need to define the number of clusters into which divide the dataset.
- Then, randomly initialize centroids (stores): they must be far enough apart (or may have computational problems).

The sushi company wants to open three new shops and you needs to **find suitable locations** to optimise the delivery service by minimising the distance between the shops and customer orders.



## ITERATION PROCESS: core of the algorithm


The algorithm iteratively calculates distances to assign the closest datapoints to the same cluster: ITERATION NUMBER ...... it.1 

## 

- Calculate the distance between datapoints and centroids [focus 1]
- Assign each datapoint to the minimum distant centroid [focus 2]



Reassign the centroids by computing the barycentre of the new clusters [focus 3]



## **#5**(♦) **OPTIMIZATION**



**Spin** if datapoints have been reasigned (iteration #3-#4)

Stop if the datapoints no longer reassigned.

Warning! To reset the wheel, spin to it. 1

## OUTPUT

 $d_1(P_1, C_1), d_2(P_2, C_2)$  and  $d_3(P_3, C_3)$ 

The point  $p_1$  is assigned to the

## FINAL OUTPUT

Congratulations, you successfully divided the dataset into 3 clusters!

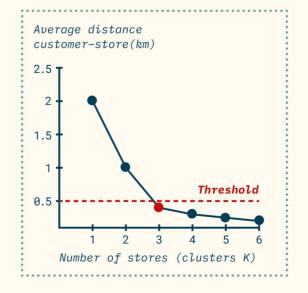
As you can see, there are 3 areas that have the highest demand for sushi, and since the **centroids** are now **static**, you just found out which are the best locations in Milan to open new sushi stores!

## HOW MANY STORES? Threshold method

\*What if you don't know how many store to open? Try the *Threshold method*, a process to compute the optimal number of clusters 

## WHAT IT IS

It plots the dispersion of the data points and translates it into a mathematical function.


• X axis = number of stores • Y axis = average distance customer - store (km)

The result is a curve where: more stores = less distance (curve distortion decreases)

### **HOW IT WORKS**

The sushi company has decided that the best customer-store distance is 0,500 km

So, you should **trace** a threshold around that measure on the graph :



## RESULT

The point where the line intersects with the curve (limit of the threshold) represents the **optimal** number of stores to divide the deliveries into

Here you can also see that after a certain number of clusters, the kilometres remain almost unchanged: non-optimal solutions

VISUAL EXPLANATIONS OF STATISTICAL METHODS

## K-means clustering

Silvia Altamura Ana Doric Wanlin Li Jessica Moreschi Martina Paggi

**AUTHORS** 

**FACULTY** 

Salvatore Zingale

Michele Mauri Ángeles Briones Gabriele Colombo Simone Vantini

**TEACHING ASSISTANTS** 

Elena Aversa Andrea Benedetti Tommaso Elli Beatrice Gobbo Arianna Bellantuono Final Synthesis Design Studio

LM in Communication Design A.A. 2022/2023





SCHOOL OF DESIGN

Matteo Repetto Lucrezia Valentini